Opportunistic Competition
Overhead Reduction for Expediting
Critical Section in NoC based CMPs

Yuan Yao and Zhonghai Lu
KTH Royal Institute of Technology
Stockholm, Sweden

ISCA 2016, Seoul, Korea, 2016-06-20.

Outline

» Introduction
* Problem

* Design

* Experiments
e Summary

ISCA 2016, 18-22 June, Seoul, Korea.

Introduction

ROYAL INSTITUTE
OF TECHNOLOGY

e For multi-threaded shared variable applications, entering and
executing critical section that contains shared data need to be
synchronized and must be mutually exclusive, meaning that
only one thread can enter and run a critical section at a time.

» As previous studies [1, 2, 3, etc.] show, the time spent in
executing critical sections by different threads is usually the
most significant source of serialization in parallel applications.

1, M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt, "Accelerating Critical Section Execution with Asymmetric Multi-core
Architectures,” in International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2009.
2, J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, "Bottleneck Identification and Scheduling in Multithreaded Applications,” in
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2012.

3, E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and Y. N. Patt, "Parallel Application Memory Scheduling,” in
International Symposium on Microarchitecture (MICRO), 2011.

ISCA 2016, 18-22 June, Seoul, Korea.

Problem

» However, performance of multi-threaded shared variable
applications is not only limited by serialized critical section
execution, but also by competition overhead (COH) which
threads experience in order to enter critical sections.

» As the number of concurrent threads grows, such competition
overhead may exceed the time spent in executing critical
section, and become the dominating factor limiting the
performance of parallel applications.

ISCA 2016, 18-22 June, Seoul, Korea.

Problem - Cont.

0 50% -
CSlLockReIease U‘400/0 E
: ® 30% -
L%CSZLockRelease %380;2 E
I 10% -
el —— S 0o, = N]
Part 1C0My Csy Q. CS ‘COH‘ CS ‘COH‘ CS ‘COH‘ CS ‘COH
Parallel Critical bodytrack/ canneal imag ilbdc ‘
Part Section

Percentage of CS execution and COH in ROI finish time

» Consisting of only a few lines of code, critical section itself
usually takes very limited time to execute.

» However, threads may spend more time competing with each
other to enter into critical sections.

ISCA 2016, 18-22 June, Seoul, Korea. 5

Queue spin-lock in state-of-the-art OS

*In OS, locking primitives are provided to support critical section
synchronization for multi-threaded programes.

o Different threads compete with each other to lock the critical
section through the locking functions.

» Most state-of-the-art OSes such as Linux 4.2 and Unix BSD 4.4
adopt queue spinlock primitive, which comprises a low-
overhead spinning phase and a high-overhead sleep phase.

- In the low-overhead spinning phase, a thread spins for locking
critical section access.

- If the critical section cannot be obtained after a certain times of
spins, the thread registers its request to a lock queue and enters the
high-overhead sleep phase.

ISCA 2016, 18-22 June, Seoul, Korea.

Queue spin-lock

ROYAL INSTITUTE
OF TECHNOLOGY

» Assume that two threads (6, and
0,) in two different nodes
compete for the same lock
variable at the home node.

e Assume that 6,’s core is a sharer
of the lock variable at the home
node at time T1.

Spin Spin

Interval Interval
0, Request Prepare—-- Idle-- Wakeup
Retry ' Sleep ;
Retry (6, Success) § Wakeup Req Lest
oc 91 QAM \&c%?/ ; (8, Success)
: ck: Re : H
A r;ﬁt s?éﬁfo\é‘?ise Home| | Y % Veent it ¥
P Pd : R I
T1 T, T3 T4 Ts Ts T7 T1 To T3 T4 Ts Te T\7 Tg T9T)10
COHfor 6,] co Hw;or 0,
Low-overhead spinning phase High-overhead sleep phase

ISCA 2016, 18-22 June, Seoul, Korea.

Design — Opportunistic competition
overhead reduction

e Qur idea

- We develop a software-hardware cooperative mechanism
to opportunistically reduce competition overhead (COH) by

- maximizing the chance that a thread gets access to critical
section during the low-overhead spinning phase.

- Meanwhile, minimizing the chance that a thread gets access
to critical section during the high-overhead sleep phase.

ISCA 2016, June 18-22, Seoul, Korea

ROYAL INSTITUTE
OF TECHNOLOGY

*» We check the
remaining times of
retry (RTR) in a
thread’s spinning
phase.

e RTR-oblivious CS
grant may result in
slow scenario.

e RTR-aware CS
grant leads to fast
scenario.

(1) Slow<

Scenario

(2) Fast)

Scenario

t;

Concept — Least RTR, first grant

RTR-oblivious CS grant

01 re]eases the 'CS '

L Oy retry succeeds | | |
i' é | RTR &f 6% at'timle 4lis 2
2 | | | |
| | | |

akingup 05 |

Legend

wake

W
| 11T NI
™ STEep. N
d prlepalrat;llon | P

| OBy releases thelCS |

l\elﬁ reliry %uc#ee#s :

N U
RI'R of B3 atjtime 4is 1

Critical Section|:|

(Fixed 2-unit time)

Non-critical

Section
(No restriction)

Sleep 7
Preparation

(Fixed 4-unit time)

Wakeup [0

(Fixed 4-unit time)

Spin-phase [u
(Max 3-unit time)

4:—timé saved
| t'_3 ST 93 réllea%es IEhe:Cs:
2 retry succeeds |

L1,

Ll
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 time

ISCA 2016, 18-22 June, Seoul, Korea.

ROYAL INSTITUTE
OF TECHNOLOGY

phase.

OWi_pOIStpOLI:]_e the ’el g} g:li;zl#:ieusc’g;;is: : i : : i i i i
critical section t, | | e
grant to a thread (1) siow]® LGRS g&aki'pgdppqg: 0 i o
Scenario L1 1 | I 1 L | || I

that h_as already 0, dle wakeup] daha o d 1
been in the sleep P

o, Wwaxeup .

=

I

» Wakeup-oblivious

CS grant may
result in slow
scenario.

» Wakeup-aware

CS grant leads to

fast scenario.

Wakeup-oblivious CS grant

t;, CS

Concept — Wakeup request, last grant

Legend

Critical Section|:|

(Fixed 2-unit time)

Non-critical

Section
(No restriction)

Slee
Prepa raRcion

(Fixed 4-unit time)

Wakeup

[I O I
[I R I
[I I I
[I I I I
I 0t 1 1 1 | [(Fixed 4-unit ti
fe . Bireleasesthe CS | | | | | 1 (Fixed 4-unit time) —
! . O, retry sucteeds | | | | | | | | | | Spin-phase e
L S A I B A T B B b | (Max 3-unit time)
0 : Bp releasestheCS | | | | | | |
(2) Fast | 72 (SN ety puceeeds ||
<
Scenario — ‘timel _ |
0 de | [wakew] | 0%
100 T Y A N I IR N
)\Nakihgwpegl [I
N Y T I R I R
T O Y A
9 10 11 12 13 14 15 16 17 18 time

ISCA 2016, 18-22 June, Seoul, Korea.

10

e

U

{52y Software level — Modification of the OS

— locking primitives

» We modified the default queue spinlock lock/unlock primitives.

1: function g spinlock lock(shared lock *lock) { 1: function g spinlock unlock(shared lock *lock) {
2 int ¢ = 0; 2 atomic release (lock) ;

3 /* Spinning phase begins */ 3: get_thread_PCB()->PROG++;

4 for (i=0; i < MAX SPIN COUNT; i++) do { 4: write_local_reg(get_thread_PCB()->PROG);
5: int RTR = MAX_SPIN_COUNT - i; 5: sys_futex(lock, FUTEX WAKE);

6: write_local_reg(RTR, get_thread_PCB()->PROG); 6: }

7 c = atomic try lock(lock); /* Atomic locking */

8 if (!'c) return 0;/* Atomic locking succeeds, return */

9: cpu_relax () ;/* Otherwise, delay and retry the locking */

10: 3}

11: sys futex(lock, FUTEX WAIT);

12: }

* No need of modifying application software.

: function pthread mutex lock(shared lock *lock) 1: function pthread mutex unlock(shared lock *lock)

: { 2: <

1

2

3:

4: g spinlock lock(lock); g spinlock unlock (lock);
5

6

aoun W

ISCA 2016, 18-22 June, Seoul, Korea. 11

Hardware level — Starvation-free
prioritization in the NoC

Conventional Fields in Additional Fields in

Packet Header Packet Header
Locking & Wakeup F — — . -
Request Packet /C\ | ‘Prl‘orlty | P‘rogress payload [Tail |
& Priority check bit
Normal Packet | [c|] payload | Tail |
RTR: 1,2,3
. Cycle
Progress: a,b Cyde 7,654 3 2 1
R: lock request 3,21 — Round robin caseil
W: wakeup w°| [rR%3 E—» S oA > (rR%2|R%3W°[R°1R°1IR"2[R"3
WP R*3|R"2 VV_> Output Roynd robin casei2
EE . rR*3lWP{R*2|R"2[R3|R"1[R"1
a b H H H H H .
R 21 - Thé propadised techniique
P WP°|R"3R?3[RP2R*2IR"1{R"1

» A prioritization mechanism in VA (VC Allocation) and SA (Switch
Allocation) to speed up least-RTR packets and slow down wakeup-
request packets.

» To avoid starvation, packets from a slower progressing thread are
prioritized over packets from a faster progressing thread.

- Thread execution progress is obtained by get_thread_PCB()->PROG.

ISCA 2016, 18-22 June, Seoul, Korea. 12

Experimental setup

° SImU|atOr: GEMS. Shared L2 Memory Controller Router
. Benchmark: PARSEC (11 ..o G (8 G B Gl
programs) and SPEC OMP2012 pr.vatﬁ%\%’\%’\%,\%,\%:\%:\%:
(all 14 programs). Netur R/g&g@g&g& &g@g@
Interface
- No Blackscholes, because it only TR R — R —R—R—R—R)
uses barrier for sync. L ,\%,\%,\%,\%,\%,\%,\%,
i R—R—R—R—R—R—(R—(R)
o Software-level modification: cHT i eH] 9T o] <] O] O
- Queue spinlock (mutex) in Linux R—(R—R—R—R—R—R—(R)
4.2. %@)%@%@%@%@%? ’@%’R)
- Locking/unlocking functions used % @] O] & cujyen|
in pthread and OpenMP libraries. . R—(R—R)—R)—R—R)—(R—R)
» Hardware-level modification: : ’R%) .
- VA and SA of the GARNET
router.

ISCA 2016, 18-22 June, Seoul, Korea.

ROYAL INSTITUTE

OF TECHNOLOGY

100% -

I I
¢—— Group 1 ——>¢— Group 2 —»¢—— Group 3 —>

Ei;ﬂ

80% -
60%
40% -
20% -

0%

CS access percentage in spinning phase

Experimental results — COH reduction

' @Original ®OCOR

botss

1
|
n 'Ii
| I | (. o
l.. l.. | ||
l:. II:. | ||
l.. II.. | | ||
w0 ol E A G . .
"N "I = m o
l.. l.. . | ||
l.. l.. . [|
l.. l.. . | ||
l:. II:. II | ||
l.. II.. II | ||
| M | . | ||
I.II.'IIIIIIII.IIIIIIIIIIIII
O M T € QO 0 < QO 0O VW T T+ 0 O >T T
UW'EGUDUKO.gemrUQ-ME?_JUJCDU'SGJ
208 0T8NV zc3IT o c > 502 ¢&
:-8E oY x5 2@ £ 9 © g a%*

700/0] 1 1
— Group 1 —_—— Group 2 —— Group 3 —m

60%
50%
40%
30%
20%
10%

0%

|
|
|
|
|

T Sy ey e S
|

.
|||||||||||||||||||||||||

* OCOR (Opportunistic Competition Overhead Reduction) increases the chance of
a thread securing critical section in the low-overhead spinning phase.
- Based on critical section access rate and network utilization, we divide all benchmarks

into 3 groups (more details in the paper).

e With OCOR, COH is constantly reduced across all benchmarks.

- Maximum reduction in botss (61.8%).

- Average reduction reaches 40.4% for PARSEC, 39.3% for OMP2012 programs.

ISCA 2016, 18-22 June, Seoul, Korea.

14

Q ﬂu_rul_ﬁl_ﬁl_!i opai &
— O __ | | | mmuOn_
a ﬂlq _\L__.\\\L_-\\\L_-\\\L_-\\\ _UE
; I | | | UO_.._ @)
Wil i A A A A E
_ K 1 _ _ _ pinL A
t .\..\._.\..\..\..\..\..\..\..\..\..\..\..\..\..\..\..\..\.L >_UOD
e ________m____m____m____m____
o o o o (=} o (@]
> 2R
S o O O O O O o
N O 00 O <
O -
—] yws
a nidde
1L pLbw
e Do
i i N
Q Tpeews S
apq| W
i e
[@) TE€G
O qeu
e O SsaABM(
p — | .\.._\...\..\..\..\..\..\..\..\..\..\..\. UE
-
X _ S| | et s
-n | i A g rErrErrr Qm;m
PR R—
A baj Q
pInyy 4
EYIET <
S E—
—t——1dnpap
w e —.TT-5)
Qw0 =5t
e, I Apoq
mﬁuﬂmﬂmxwm TT T T [T T T T [T T T T[T T T T [TTTT
£x 2x
e Ze
Pl f 2 2 2R 23
LX) a% >u
B0 %o o o o o o o
LN < ™ N i

15

Comparison in ROI finish time

ISCA 2016, 18-22 June, Seoul, Korea.

- Average reduction reaches 13.7% for PARSEC, 15.1% for OMP2012

» OCOR constantly reduces COH percentage in ROI finish time.
- Maximum reduction in /ibdc (24.5%).

* OCOR thus accelerates application ROI execution.

COH percentage in ROI finish time

Experimental results — Scalability

ROYAL INSTITUTE

OF TECHNOLOGY

B 16 threads @32 threads ©O64 threads

B4 threads

N Original

FilF i FFEFFFFyri

ol il A i AT

Wil A A AT AT

il A

EEFFEFFFFEFFEFFEETT,

i AT

il A

EEFFEFTFFFFFFFFFFFT

| 90.1p))

yaws

nidde
plIbw

bewl

WIMS

pEewy

IPq|!

ss10q
esjoq

T€€39
Zw (eu

At U wl

iV AT EEEFEEFF

lllllllllllllllllllllllllllllll

Al A A A A

FEFFFFFFFFFFFTFFFTFF

il i A S S S

LR FFFFITFFFTFIFFFTT

Kl iy

97X

sdIA

dems

weans

ba.y

pinyJ
19443

2o}

dnpap

ued

&5 Apog

120% -

64 threads

* We normalize the competition overhead without OCOR to 100%.

32,
* OCOR constantly reduces the competition overhead across all

/

COH percentage for all benchmarks running in 4, 16

benchmarks.
* The more threads spawned, the larger COH reduction achieved.

16

ISCA 2016, 18-22 June, Seoul, Korea.

Summary

* Problem: competition overhead is a major source of thread’s
blocking time, exceeding the execution time of CS itself.

» Central idea: opportunistically

- maximize the chance that a thread wins the CS access in the low-
overhead spinning phase;

- minimize the chance that a thread wins the CS access in the high-
overhead sleep phase.

» Approach: a software-hardware cooperative technique that
can effectively reduce the competition overhead of threads
accessing critical sections.

» Experimental results: Our technique significantly reduces the
competition overhead, improves the ROI finish time, and
achieves scalable gains across all benchmark programs.

ISCA 2016, 18-22 June, Seoul, Korea.

17

Q? T %Qa
£

VETENSKAP
38 OCH KONST 9%

ROYAL INSTITUTE
OF TECHNOLOGY

Thank you!

Q& A

ISCA 2016, 18-22 June, Seoul, Korea.

18

