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Introduction
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e For multi-threaded shared variable applications, entering and
executing critical section that contains shared data need to be
synchronized and must be mutually exclusive, meaning that
only one thread can enter and run a critical section at a time.

» As previous studies [1, 2, 3, etc.] show, the time spent in
executing critical sections by different threads is usually the
most significant source of serialization in parallel applications.

1, M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt, "Accelerating Critical Section Execution with Asymmetric Multi-core
Architectures,” in International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2009.
2, J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, "Bottleneck Identification and Scheduling in Multithreaded Applications,” in
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2012.

3, E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and Y. N. Patt, "Parallel Application Memory Scheduling,” in
International Symposium on Microarchitecture (MICRO), 2011.
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Problem

» However, performance of multi-threaded shared variable
applications is not only limited by serialized critical section
execution, but also by competition overhead (COH) which
threads experience in order to enter critical sections.

» As the number of concurrent threads grows, such competition
overhead may exceed the time spent in executing critical
section, and become the dominating factor limiting the
performance of parallel applications.
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Problem - Cont.
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» Consisting of only a few lines of code, critical section itself
usually takes very limited time to execute.

» However, threads may spend more time competing with each
other to enter into critical sections.
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Queue spin-lock in state-of-the-art OS

*In OS, locking primitives are provided to support critical section
synchronization for multi-threaded programes.

o Different threads compete with each other to lock the critical
section through the locking functions.

» Most state-of-the-art OSes such as Linux 4.2 and Unix BSD 4.4
adopt queue spinlock primitive, which comprises a low-
overhead spinning phase and a high-overhead sleep phase.

- In the low-overhead spinning phase, a thread spins for locking
critical section access.

- If the critical section cannot be obtained after a certain times of
spins, the thread registers its request to a lock queue and enters the
high-overhead sleep phase.
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Queue spin-lock
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» Assume that two threads (6, and
0,) in two different nodes
compete for the same lock
variable at the home node.

e Assume that 6,’s core is a sharer
of the lock variable at the home
node at time T1.
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Design — Opportunistic competition
overhead reduction

e Qur idea

- We develop a software-hardware cooperative mechanism
to opportunistically reduce competition overhead (COH) by

- maximizing the chance that a thread gets access to critical
section during the low-overhead spinning phase.

- Meanwhile, minimizing the chance that a thread gets access
to critical section during the high-overhead sleep phase.
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*» We check the
remaining times of
retry (RTR) in a
thread’s spinning
phase.

e RTR-oblivious CS
grant may result in
slow scenario.

e RTR-aware CS
grant leads to fast
scenario.
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{52y Software level — Modification of the OS

— locking primitives

» We modified the default queue spinlock lock/unlock primitives.

1: function g spinlock lock(shared lock *lock) { 1: function g spinlock unlock(shared lock *lock) {
2 int ¢ = 0; 2 atomic release (lock) ;

3 /* Spinning phase begins */ 3: get_thread_PCB()->PROG++;

4 for (i=0; i < MAX SPIN COUNT; i++) do { 4: write_local_reg(get_thread_PCB()->PROG);
5: int RTR = MAX_SPIN_COUNT - i; 5: sys_futex(lock, FUTEX WAKE);

6: write_local_reg(RTR, get_thread_PCB()->PROG); 6: }

7 c = atomic try lock(lock); /* Atomic locking */

8 if (!'c) return 0;/* Atomic locking succeeds, return */

9: cpu_relax () ;/* Otherwise, delay and retry the locking */

10: 3}

11: sys futex(lock, FUTEX WAIT);

12: }

* No need of modifying application software.

: function pthread mutex lock(shared lock *lock) 1: function pthread mutex unlock(shared lock *lock)

: { 2: <

1

2

3:

4: g spinlock lock(lock); g spinlock unlock (lock);
5

6

aoun W
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Hardware level — Starvation-free
prioritization in the NoC
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» A prioritization mechanism in VA (VC Allocation) and SA (Switch
Allocation) to speed up least-RTR packets and slow down wakeup-
request packets.

» To avoid starvation, packets from a slower progressing thread are
prioritized over packets from a faster progressing thread.

- Thread execution progress is obtained by get_thread_PCB()->PROG.
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Experimental setup

° SImU|atOr: GEMS. Shared L2 Memory Controller Router
. Benchmark: PARSEC (11 ..o G (8 G B Gl
programs) and SPEC OMP2012 pr.vatﬁ%\%’\%’\%,\%,\%:\%:\%:
(all 14 programs). Netur R/g&g@g&g& &g@g@
Interface
- No Blackscholes, because it only TR R — R —R—R—R—R)
uses barrier for sync. L ,\%,\%,\%,\%,\%,\%,\%,
i R—R—R—R—R—R—(R—(R)
o Software-level modification: cHT i eH] 9T o] <] O] O
- Queue spinlock (mutex) in Linux R—(R—R—R—R—R—R—(R)
4.2. %@)%@%@%@%@%? ’@%’R)
- Locking/unlocking functions used % @] O] & cujyen|
in pthread and OpenMP libraries. . R—(R—R)—R)—R—R)—(R—R)
» Hardware-level modification: : ’R% ) .
- VA and SA of the GARNET
router.
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Experimental results — COH reduction
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* OCOR (Opportunistic Competition Overhead Reduction) increases the chance of
a thread securing critical section in the low-overhead spinning phase.
- Based on critical section access rate and network utilization, we divide all benchmarks

into 3 groups (more details in the paper).

e With OCOR, COH is constantly reduced across all benchmarks.

- Maximum reduction in botss (61.8%).

- Average reduction reaches 40.4% for PARSEC, 39.3% for OMP2012 programs.
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Comparison in ROI finish time
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- Average reduction reaches 13.7% for PARSEC, 15.1% for OMP2012

» OCOR constantly reduces COH percentage in ROI finish time.
- Maximum reduction in /ibdc (24.5%).

* OCOR thus accelerates application ROI execution.

COH percentage in ROI finish time




Experimental results — Scalability
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* We normalize the competition overhead without OCOR to 100%.

32,
* OCOR constantly reduces the competition overhead across all

/

COH percentage for all benchmarks running in 4, 16

benchmarks.
* The more threads spawned, the larger COH reduction achieved.
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Summary

* Problem: competition overhead is a major source of thread’s
blocking time, exceeding the execution time of CS itself.

» Central idea: opportunistically

- maximize the chance that a thread wins the CS access in the low-
overhead spinning phase;

- minimize the chance that a thread wins the CS access in the high-
overhead sleep phase.

» Approach: a software-hardware cooperative technique that
can effectively reduce the competition overhead of threads
accessing critical sections.

» Experimental results: Our technique significantly reduces the
competition overhead, improves the ROI finish time, and
achieves scalable gains across all benchmark programs.
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