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Introduction

• For multi-threaded shared variable applications, entering and 
executing critical section that contains shared data need to be 
synchronized and must be mutually exclusive, meaning that 
only one thread can enter and run a critical section at a time.

• As previous studies [1, 2, 3, etc.] show, the time spent in 
executing critical sections by different threads is usually the 
most significant source of serialization in parallel applications.

1, M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt, “Accelerating Critical Section Execution with Asymmetric Multi-core 
Architectures,” in International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2009.

2, J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck Identification and Scheduling in Multithreaded Applications,” in 
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2012.

3, E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and Y. N. Patt, “Parallel Application Memory Scheduling,” in 
International Symposium on Microarchitecture (MICRO), 2011.
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Problem

• However, performance of multi-threaded shared variable 
applications is not only limited by serialized critical section 
execution, but also by competition overhead (COH) which 
threads experience in order to enter critical sections.

• As the number of concurrent threads grows, such competition 
overhead may exceed the time spent in executing critical 
section, and become the dominating factor limiting the 
performance of parallel applications.
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Problem – Cont.

• Consisting of only a few lines of code, critical section itself 
usually takes very limited time to execute.

• However, threads may spend more time competing with each 
other to enter into critical sections.
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Queue spin-lock in state-of-the-art OS

• In OS, locking primitives are provided to support critical section 
synchronization for multi-threaded programs.

• Different threads compete with each other to lock the critical 
section through the locking functions.

• Most state-of-the-art OSes such as Linux 4.2 and Unix BSD 4.4 
adopt queue spinlock primitive, which comprises a low-
overhead spinning phase and a high-overhead sleep phase.

- In the low-overhead spinning phase, a thread spins for locking 
critical section access.

- If the critical section cannot be obtained after a certain times of 
spins, the thread registers its request to a lock queue and enters the 
high-overhead sleep phase.
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Queue spin-lock
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• Assume that two threads (θ1 and
θ2) in two different nodes 
compete for the same lock 
variable at the home node.

• Assume that θ2’s core is a sharer 
of the lock variable at the home 
node at time T1.
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• Our idea
- We develop a software-hardware cooperative mechanism 
to opportunistically reduce competition overhead (COH) by 

- maximizing the chance that a thread gets access to critical 
section during the low-overhead spinning phase.

- Meanwhile, minimizing the chance that a thread gets access 
to critical section during the high-overhead sleep phase.

Design – Opportunistic competition 
overhead reduction



Concept – Least RTR, first grant

• We check the 
remaining times of 
retry (RTR) in a 
thread’s spinning 
phase.

• RTR-oblivious CS 
grant may result in 
slow scenario.

• RTR-aware CS 
grant leads to fast 
scenario.
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Concept – Wakeup request, last grant

• We postpone the 
critical section 
grant to a thread 
that has already 
been in the sleep 
phase.

• Wakeup-oblivious 
CS grant may 
result in slow 
scenario.

• Wakeup-aware 
CS grant leads to 
fast scenario.
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Software level – Modification of the OS 
locking primitives

1: function q_spinlock_lock(shared_lock *lock) {

2:   int c = 0;

3: /* Spinning phase begins */

4:  for (i=0; i < MAX_SPIN_COUNT; i++) do {

5: int RTR = MAX_SPIN_COUNT - i;

6: write_local_reg(RTR, get_thread_PCB()->PROG);

7: c = atomic_try_lock(lock); /* Atomic locking */

8: if (!c) return 0;/* Atomic locking succeeds, return */

9:         cpu_relax();/* Otherwise, delay and retry the locking */

10:  }

11: sys_futex(lock, FUTEX_WAIT);

12: }
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1: function q_spinlock_unlock(shared_lock *lock) {

2: atomic_release(lock);

3: get_thread_PCB()->PROG++;

4:     write_local_reg(get_thread_PCB()->PROG);

5:     sys_futex(lock, FUTEX_WAKE);

6: }

1: function pthread_mutex_lock(shared_lock *lock)

2: {

3:   …
4:   q_spinlock_lock(lock);

5:   …
6: }

1: function pthread_mutex_unlock(shared_lock *lock)

2: {

3:   …
4:  q_spinlock_unlock(lock);

5:  …
6: }

• We modified the default queue spinlock lock/unlock primitives.

• No need of modifying application software. 



Hardware level – Starvation-free 
prioritization in the NoC
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• A prioritization mechanism in VA (VC Allocation) and SA (Switch 
Allocation) to speed up least-RTR packets and slow down wakeup-
request packets.

• To avoid starvation, packets from a slower progressing thread are 
prioritized over packets from a faster progressing thread.

- Thread execution progress is obtained by get_thread_PCB()->PROG.
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Experimental setup

• Simulator: GEM5.

• Benchmark: PARSEC (11 
programs) and SPEC OMP2012 
(all 14 programs).

- No Blackscholes, because it only 
uses barrier for sync.

• Software-level modification:

- Queue spinlock (mutex) in Linux 

4.2. 

• Locking/unlocking functions used 
in pthread and OpenMP libraries.

• Hardware-level modification: 

- VA and SA of the GARNET 
router.
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Experimental results – COH reduction
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• OCOR (Opportunistic Competition Overhead Reduction) increases the chance of 
a thread securing critical section in the low-overhead spinning phase.

- Based on critical section access rate and network utilization, we divide all benchmarks 
into 3 groups (more details in the paper).

• With OCOR, COH is constantly reduced across all benchmarks.

- Maximum reduction in botss (61.8%). 

- Average reduction reaches 40.4% for PARSEC, 39.3% for OMP2012 programs.
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Experimental results – ROI acceleration

• OCOR constantly reduces COH percentage in ROI finish time.

• OCOR thus accelerates application ROI execution.

- Maximum reduction in libdc (24.5%). 

- Average reduction reaches 13.7% for PARSEC, 15.1% for OMP2012.
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Experimental results – Scalability

• We normalize the competition overhead without OCOR to 100%.

• OCOR constantly reduces the competition overhead across all 
benchmarks. 

• The more threads spawned, the larger COH reduction achieved.
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Summary

• Problem: competition overhead is a major source of thread’s 
blocking time, exceeding the execution time of CS itself.

• Central idea: opportunistically

- maximize the chance that a thread wins the CS access in the low-
overhead spinning phase;

- minimize the chance that a thread wins the CS access in the high-
overhead sleep phase.

• Approach: a software-hardware cooperative technique that 
can effectively reduce the competition overhead of threads 
accessing critical sections.

• Experimental results: Our technique significantly reduces the 
competition overhead, improves the ROI finish time, and 
achieves scalable gains across all benchmark programs.
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Thank you!
Q & A
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