
Opportunistic Competition
Overhead Reduction for Expediting
Critical Section in NoC based CMPs

Yuan Yao and Zhonghai Lu

KTH Royal Institute of Technology

Stockholm, Sweden

ISCA 2016, Seoul, Korea, 2016-06-20.

Outline

• Introduction

• Problem

• Design

• Experiments

• Summary

2ISCA 2016, 18-22 June, Seoul, Korea.

Introduction

• For multi-threaded shared variable applications, entering and
executing critical section that contains shared data need to be
synchronized and must be mutually exclusive, meaning that
only one thread can enter and run a critical section at a time.

• As previous studies [1, 2, 3, etc.] show, the time spent in
executing critical sections by different threads is usually the
most significant source of serialization in parallel applications.

1, M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt, “Accelerating Critical Section Execution with Asymmetric Multi-core
Architectures,” in International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2009.

2, J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck Identification and Scheduling in Multithreaded Applications,” in
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2012.

3, E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and Y. N. Patt, “Parallel Application Memory Scheduling,” in
International Symposium on Microarchitecture (MICRO), 2011.

ISCA 2016, 18-22 June, Seoul, Korea. 3

Problem

• However, performance of multi-threaded shared variable
applications is not only limited by serialized critical section
execution, but also by competition overhead (COH) which
threads experience in order to enter critical sections.

• As the number of concurrent threads grows, such competition
overhead may exceed the time spent in executing critical
section, and become the dominating factor limiting the
performance of parallel applications.

ISCA 2016, 18-22 June, Seoul, Korea. 4

Problem – Cont.

• Consisting of only a few lines of code, critical section itself
usually takes very limited time to execute.

• However, threads may spend more time competing with each
other to enter into critical sections.

ISCA 2016, 18-22 June, Seoul, Korea. 5

0%
10%
20%
30%
40%
50%

CS COH CS COH CS COH CS COH

bodytrack canneal imag ilbdc

P
e
r
c
e
n

ta
g

eThread θ1

Thread θ2

Thread θN-1

Thread θN

CS1

CS2

CSN-1

CSN

Serial
Part

Parallel
Part

Critical
Section

Lock Release

Lock Release

Lock Release

COH2

COHN-1

COHN

…

Percentage of CS execution and COH in ROI finish time

Queue spin-lock in state-of-the-art OS

• In OS, locking primitives are provided to support critical section
synchronization for multi-threaded programs.

• Different threads compete with each other to lock the critical
section through the locking functions.

• Most state-of-the-art OSes such as Linux 4.2 and Unix BSD 4.4
adopt queue spinlock primitive, which comprises a low-
overhead spinning phase and a high-overhead sleep phase.

- In the low-overhead spinning phase, a thread spins for locking
critical section access.

- If the critical section cannot be obtained after a certain times of
spins, the thread registers its request to a lock queue and enters the
high-overhead sleep phase.

ISCA 2016, 18-22 June, Seoul, Korea. 6

Queue spin-lock

ISCA 2016, 18-22 June, Seoul, Korea. 7

• Assume that two threads (θ1 and
θ2) in two different nodes
compete for the same lock
variable at the home node.

• Assume that θ2’s core is a sharer
of the lock variable at the home
node at time T1.

Home

θ1

θ2
Request

Critical
Section

T1 T2 T4 T5 T7T6

Request

T10

Prepare
Sleep

Idle

T3 T8 T9

Ack.

Inv.

COH for θ2

Wakeup

Wakeup Request
(θ1 Success)

Sleep

Lock
Grant

Lock
Release

Request

Ack.

Retry

Critical
Section

Spin
Interval

T1 T2 T3 T4 T6

Spin
Interval

T5

Retry
(θ1 Success)

Inv.

T7

Lock
ReleaseLock

Grant

Request

COH for θ2

Home

θ1

θ2

Low-overhead spinning phase High-overhead sleep phase

C
NI

C
NI

C
NI

C
NI

R R

C
NI

C
NI

R R

C
NI

C
NI

C
NI

C
NI

R R

C
NI

C
NI

R R

C
NI

C
NI

R R
C
NI

C
NI

R R

R R R R

θ1

θ2

Home

ISCA 2016, June 18-22, Seoul, Korea 8

• Our idea
- We develop a software-hardware cooperative mechanism
to opportunistically reduce competition overhead (COH) by

- maximizing the chance that a thread gets access to critical
section during the low-overhead spinning phase.

- Meanwhile, minimizing the chance that a thread gets access
to critical section during the high-overhead sleep phase.

Design – Opportunistic competition
overhead reduction

Concept – Least RTR, first grant

• We check the
remaining times of
retry (RTR) in a
thread’s spinning
phase.

• RTR-oblivious CS
grant may result in
slow scenario.

• RTR-aware CS
grant leads to fast
scenario.

ISCA 2016, 18-22 June, Seoul, Korea. 9

θ1

θ2

θ3

θ1

θ2

θ3

t1

t2

t3

t1

t2

t3

CS

time saved

(1) Slow
Scenario

(2) Fast
Scenario

RTR of θ3 at time 4 is 1

Critical Section

Sleep
Preparation

Spin-phase

Wakeup

time1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RTR of θ2 at time 4 is 2

θ1 releases the CS
θ2 retry succeeds

waking up θ3

θ1 releases the CS
θ3 retry succeeds

θ3 releases the CS
θ2 retry succeeds

Non-critical
Section

16 17 18

Legend

wakeupsleep
preparation

(Fixed 2-unit time)

(Fixed 4-unit time)

(Fixed 4-unit time)

(Max 3-unit time)

(No restriction)

RTR-oblivious CS grant

RTR-aware CS grant

Concept – Wakeup request, last grant

• We postpone the
critical section
grant to a thread
that has already
been in the sleep
phase.

• Wakeup-oblivious
CS grant may
result in slow
scenario.

• Wakeup-aware
CS grant leads to
fast scenario.

ISCA 2016, 18-22 June, Seoul, Korea. 10

Critical Section

Sleep
Preparation

Spin-phase

Wakeup

Non-critical
Section

Legend

(Fixed 2-unit time)

(Fixed 4-unit time)

(Fixed 4-unit time)

(Max 3-unit time)

(No restriction)

θ1

θ2

θ3

t1

t2

t3

CS

time
saved

θ4

t4

θ1

θ2

θ3

t1

t2

CS

θ4

t4

wakeup

wakeup

idle

t3

θ1 releases the CS
θ2 retry succeeds

waking up θ3

waking up θ4

θ1 releases the CS
θ2 retry succeeds

θ2 releases the CS
θ4 retry succeeds

waking up θ3

idle

idle

time1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(1) Slow
Scenario

(2) Fast
Scenario

sleep
preparation

wakeup

Wakeup-oblivious CS grant

Wakeup-aware CS grant

Software level – Modification of the OS
locking primitives

1: function q_spinlock_lock(shared_lock *lock) {

2: int c = 0;

3: /* Spinning phase begins */

4: for (i=0; i < MAX_SPIN_COUNT; i++) do {

5: int RTR = MAX_SPIN_COUNT - i;

6: write_local_reg(RTR, get_thread_PCB()->PROG);

7: c = atomic_try_lock(lock); /* Atomic locking */

8: if (!c) return 0;/* Atomic locking succeeds, return */

9: cpu_relax();/* Otherwise, delay and retry the locking */

10: }

11: sys_futex(lock, FUTEX_WAIT);

12: }

ISCA 2016, 18-22 June, Seoul, Korea. 11

1: function q_spinlock_unlock(shared_lock *lock) {

2: atomic_release(lock);

3: get_thread_PCB()->PROG++;

4: write_local_reg(get_thread_PCB()->PROG);

5: sys_futex(lock, FUTEX_WAKE);

6: }

1: function pthread_mutex_lock(shared_lock *lock)

2: {

3: …
4: q_spinlock_lock(lock);

5: …
6: }

1: function pthread_mutex_unlock(shared_lock *lock)

2: {

3: …
4: q_spinlock_unlock(lock);

5: …
6: }

• We modified the default queue spinlock lock/unlock primitives.

• No need of modifying application software.

Hardware level – Starvation-free
prioritization in the NoC

ISCA 2016, 18-22 June, Seoul, Korea. 12

• A prioritization mechanism in VA (VC Allocation) and SA (Switch
Allocation) to speed up least-RTR packets and slow down wakeup-
request packets.

• To avoid starvation, packets from a slower progressing thread are
prioritized over packets from a faster progressing thread.

- Thread execution progress is obtained by get_thread_PCB()->PROG.

C
NI

C
NI

C
NI

C
NI

R R

C
NI

C
NI

R R

C
NI

C
NI

C
NI

C
NI

R R

C
NI

C
NI

R R

C
NI

C
NI

R R
C
NI

C
NI

R R

R R R R

R
b
3

R
a
3 R

b
2

R
a
2 R

b
1

R
a
1

R
b
2R

b
3 R

a
2 R

a
1R

a
3 R

b
1

θ3:Ra3

θ1:Ra1

R
b
2R

a
3 R

b
3 R

a
1R

a
2 R

b
1

R
b
1R

a
3 R

a
1 R

b
3W

b
R

b
2

Round robin case 1

Round robin case 2

The proposed technique

Priority

Additional Fields in
Packet Header

payload
Locking & Wakeup

Request Packet
Tail

1
Router R

23
Cycle

Pri-VA
Pri-SA

E

S

W

N

Output

Progress

W
b

R
a
2

W
b

W
b

θp:Wb

C
Priority check bit

Conventional Fields in
Packet Headerθ2:Ra2

η1:Rb1

η3:Rb3
Home

η2:Rb2

payload TailCNormal Packet

1234567
Cycle

• RTR: 1,2,3

• Progress: a,b

• R: lock request

• W: wakeup

Experimental setup

• Simulator: GEM5.

• Benchmark: PARSEC (11
programs) and SPEC OMP2012
(all 14 programs).

- No Blackscholes, because it only
uses barrier for sync.

• Software-level modification:

- Queue spinlock (mutex) in Linux

4.2.

• Locking/unlocking functions used
in pthread and OpenMP libraries.

• Hardware-level modification:

- VA and SA of the GARNET
router.

ISCA 2016, 18-22 June, Seoul, Korea. 13

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

R

C
NI

Core with
Private L1

Shared L2 Memory Controller

Network
Interface

Router

Experimental results – COH reduction

ISCA 2016, 18-22 June, Seoul, Korea. 14

0%

10%

20%

30%

40%

50%

60%

70%

b
o
ts

s

il
b
d
c

b
o
ts

a

m
g
ri
d

c
a
n

d
e
d
u
p

fa
c
e

x
2
6
4

s
w

im

s
tr

e
a
m

s
w

a
p

n
a
b

v
ip

s

fm
a
3
d

m
d

fe
rr

e
t

b
w

a
v
e
s

k
d
tr

e
e

b
o
d
y

fl
u
id

fr
e
q

s
m

it
h

a
p
p
lu

b
t3

3
1

im
a
g

Group 1 Group 2 Group 3

• OCOR (Opportunistic Competition Overhead Reduction) increases the chance of
a thread securing critical section in the low-overhead spinning phase.

- Based on critical section access rate and network utilization, we divide all benchmarks
into 3 groups (more details in the paper).

• With OCOR, COH is constantly reduced across all benchmarks.

- Maximum reduction in botss (61.8%).

- Average reduction reaches 40.4% for PARSEC, 39.3% for OMP2012 programs.

COH reduction with OCOR

0%

20%

40%

60%

80%

100%

b
o
ts

s

il
b
d
c

b
o
ts

a

m
g
ri
d

c
a
n

d
e
d
u
p

fa
c
e

x
2
6
4

s
w

im

s
tr

e
a
m

s
w

a
p

n
a
b

v
ip

s

fm
a
3
d

m
d

fe
rr

e
t

b
w

a
v
e
s

k
d
tr

e
e

b
o
d
y

fl
u
id

fr
e
q

s
m

it
h

a
p
p
lu

b
t3

3
1

im
a
g

Original OCOR

Group 1 Group 2 Group 3

CS access percentage in spinning phase

Experimental results – ROI acceleration

• OCOR constantly reduces COH percentage in ROI finish time.

• OCOR thus accelerates application ROI execution.

- Maximum reduction in libdc (24.5%).

- Average reduction reaches 13.7% for PARSEC, 15.1% for OMP2012.

ISCA 2016, 18-22 June, Seoul, Korea. 15

0%

10%

20%

30%

40%

50%

b
o
d
y

c
a
n

d
e
d
u
p

fa
c
e

fe
rr

e
t

fl
u
id

fr
e
q

s
tr

e
a
m

s
w

a
p

v
ip

s

x
2
6
4

m
d

b
w

a
v
e
s

n
a
b

b
t3

3
1

b
o
ts

a

b
o
ts

s

il
b
d
c

fm
a
3
d

s
w

im

im
a
g

m
g
ri
d

a
p
p
lu

s
m

it
h

k
d
tr

e
e

PARSEC OMP2012

Original OCOR

0%

20%

40%

60%

80%

100%

120%

b
o
d
y

c
a
n

d
e
d
u
p

fa
c
e

fe
rr

e
t

fl
u
id

fr
e
q

s
tr

e
a
m

s
w

a
p

v
ip

s

x
2
6
4

m
d

b
w

a
v
e
s

n
a
b

b
t3

3
1

b
o
ts

a

b
o
ts

s

il
b
d
c

fm
a
3
d

s
w

im

im
a
g

m
g
ri
d

a
p
p
lu

s
m

it
h

k
d
tr

e
e

PARSEC OMP2012

Original OCOR

Comparison in ROI finish timeCOH percentage in ROI finish time

Experimental results – Scalability

• We normalize the competition overhead without OCOR to 100%.

• OCOR constantly reduces the competition overhead across all
benchmarks.

• The more threads spawned, the larger COH reduction achieved.

ISCA 2016, 18-22 June, Seoul, Korea. 16

0%

20%

40%

60%

80%

100%

120%
b
o
d
y

c
a
n

d
e
d
u
p

fa
c
e

fe
rr

e
t

fl
u
id

fr
e
q

s
tr

e
a
m

s
w

a
p

v
ip

s

x
2
6
4

m
d

b
w

a
v
e
s

n
a
b

b
t3

3
1

b
o
ts

a

b
o
ts

s

il
b
d
c

fm
a
3
d

s
w

im

im
a
g

m
g
ri
d

a
p
p
lu

s
m

it
h

k
d
tr

e
e

PARSEC OMP2012

Original 4 threads 16 threads 32 threads 64 threads

COH percentage for all benchmarks running in 4, 16, 32, 64 threads

Summary

• Problem: competition overhead is a major source of thread’s
blocking time, exceeding the execution time of CS itself.

• Central idea: opportunistically

- maximize the chance that a thread wins the CS access in the low-
overhead spinning phase;

- minimize the chance that a thread wins the CS access in the high-
overhead sleep phase.

• Approach: a software-hardware cooperative technique that
can effectively reduce the competition overhead of threads
accessing critical sections.

• Experimental results: Our technique significantly reduces the
competition overhead, improves the ROI finish time, and
achieves scalable gains across all benchmark programs.

ISCA 2016, 18-22 June, Seoul, Korea. 17

Thank you!
Q & A

ISCA 2016, 18-22 June, Seoul, Korea. 18

