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MNIST with —— MNIST with
MLP 5 Layers MLP 4 Layers o improve throughout &
— o Scene Labeling MNIST with Flexibility | P ghp )

1000 with ConvNN ~ " MLP 3 Layers A ower power consumption
___________ “DRAM CPU/GPGPU > i}
------- SRAM

100 — (under 1mm?

Run SW for
area constminW diff. NN types I
10 Scalable & programmable
/ 431MB |
| = -/ --------------------------------------- Fixed design FASIC
1

Memory Requirement (MB)

// 1.25MB for specific NN

28x28 128x96 176 x 144 256 x 192 Efficiency (GOPs/s/W)

Image Size

A Low operation density (ops/byte)

A Massive date required

Digital neuro-inspired architecture with programmability to cover different types
of neural networks, scalability, and high energy efficiency
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Architecture for Neural Computing Emoe [
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Programmable, scalable platform as processor in memory

Memory vault

e
| I
\| |/ NoC >Parallel cores
architecture
Buffer Buffer
/7 i di MAC|| MAC| || | MAC|| MAC
PIM based accelerator Logic die vaclivacl |

_ MAC|| MAC
for neural computing N Processing Engine

Hybrid Memory Cube (HMC)

A Heterogeneous integration

Q1. Neural computing layer should meet

thermal and area constraint in 3D stacked

DRAM

{75‘» Q2. NeuroCube should be programmable

\/abricated by Micron to cover different types of neural network
[J. Jeddeloh "12 TVLSI]

A Flexible logic die design
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Basic NeuroCube Architecture e
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Processor-in-memory + Parallelism

One core

000 1
Buffer

Reg. for
weights

MAC

Processing engine (PE)
|

Vault

\VVC | Vault ctrl

Router| R

TSVs

N $$ 35935 $ 8

(Y=AB+C)

, i
____________ Operatlon
|counter

—Y=AB+C!

/

Vault
T Tve] )
R
I
PE
\ J

NeuroCube computing core
A Multiple MAC units and its temporal buffer
A Packet based NoC router

A Programmable neuroseguence generator

A Buffer to handle out-of-order packet arrival
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Operational Model of NeuroCube
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Property of Neural Network: -
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% Deterministic Connections in Inference ENFHCIENT :
2D convolutional Fully connected Recurrent connected General expression of
artificial neural network

(ANN)

W < 05 ¢<b>
ek

‘Oset of connected neurons

&

locally All neurons All neurons
neighborhood in prev. layer in prev. layer + current layer

A Different NN layer can be mapped by changing set of connected neurons

A Different data movements (memory address) can map different NN layers in

NeuroCube
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Deterministic Connections in Training
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A Backpropagation with gradient descent
A (® 1 )Zze & (hidden)or (Q w)ze  (output)
- o derivative of NL activation function

- Z: element-wise multiplication
- [ : learning rate

A 3® 1w ho A [ 30

A Itis composed of
A Matrix-vector multiplication, element-wise multiplication, and outer product
A Can be mapped to FC layer with many zeros in matrix

A Training in neural network still has deterministic connections
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Programmable Neurosequence Generator (PNG)

A Sequence of operands is predetermined
A Based on the sequence, memorycan push the data  without request

A Data is delivered as packet through NoC

Memory Memory
3 PNG
Memory
Controller =
) Program On-chip
. counter interface (bus)
On-chip T
interface (bus) ’\ : v
3 Instruction
Processing decoder Processing engine
engine

Memory centric

Conventional ISA operation _
operation
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A Assume 2 vaults in NeuroCube, 3 MACs/PE
A For synaptic weights

A Divide synaptic weights matrix into 2 vaults
A For previous layer

A Divide input previous into 2 vaults or |
A Duplicate prev. layer into all vaults (reduce NoC traffic) Wi2=[5 Dby 4] matrix

AAll neuronds states
weights are 16bit fixed point

. 32pit
Vault 0 Vault 1
Memory range for next layer

0Ox100A

Synaptic _

bl
0x1004 E— T Memory range for this layer
0x1002 oC o rta lent oC o rta ien
0x1000 —> ate ate »

10
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A Assume 2 vaults in NeuroCube, 3 MACs/PE
A For each vault, it will push data to NoC within packet form

Vault O
| MAC-ID | OP-ID_|

L 32bit
State 4bit 4bit 16bit 4bit 8bit

Ox100A -
Synaptic [
weights
0x1004 - : for(j=0;j<1;j++) {//lone MAC cover one neuron]j]
0x1002 -»| L-oca Gradient for( i =0;i<4;i++) {//4 neurons| i ] to one neuron(j]
0x1000 State for(k=0:k<3;k  ++){//  state/weight/local grad
] for(m=0;m<3;m++) {//#MACs/PE = 3
| Address Generator{ if k==0
addr = addr_gen (i,j,m,state )
else ifk==1
addr = addr_gen (i,j,m,weight )
else
addr = addr_gen (i,j,j,local grad )
MAC|| MAC|[ MAC }
O] [ [A] [ [2] }
} j Three nested-counters

11
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Push packet (state[0]) to MAC [0]

000

State [0]

‘ -------- MAC [0]
8 Q -------- MAC [1]
Q -------- MAC [2]

12
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Push packet (state[0]) to MAC [1]

000

State [0]

Q -------- MAC [0]
8 ‘ -------- MAC [1]
Q -------- MAC [2]

13
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Push packet (state[0]) to MAC [2]

000

State [0]

Q -------- MAC [0]
8 Q -------- MAC [1]
‘ -------- MAC [2]

14
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Push packet (weight[0,0]) to MAC [0]

W [0, 0]

TS
’ N
’ \ O
1
1
’
’
-
N
\
1

000

MAC [0]

MAC [1]

MAC [2]

15
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Push packet (weight[0,1]) to MAC [1]

W [0, 1]

TS
’ N
’ \ O
1
1
’
’
-
N
\
1

000

MAC [0]

MAC [1]

MAC [2]

16
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Push packet (weight[0,2]) to MAC [2]

000

-- DATA | MAC-1D m

W [0, 2]

““““ MAC [0]

8\0 ________ — [l]
‘ """" MAC [2]

17



gMCNC Data Flow (7)
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Push packet (state[1]) to MAC [0]

State [1]

O
. 1C

MAC [0]

MAC [1]

MAC [2]

000

And so

18
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Out -of -order Packet Arrival Problem
In NeuroCube
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Out - of -order Packet Arrival Ramr.
Cr¥ |ssue: NoC Congestion

Duplicating Previous Layer Non Duplication
82 W, ,= [5 by 4] matrix

~ -’ ~
S -7 RS -,
~ - ~ -
~ - ~ .
4
[ [ [ W

PE|| PE PE|| PE

Although data access is sequential, data arrival can be
out-of-order due to NoC congestion

20
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R[2]

Ox3F | 15

23

Weight

Memory

PE[2]

OO0 Buffer

0

Temp Buffer

1

Ve

Ox7Ale

0 14] 15

v

fl_

\ 4
16 MACs

OP_CNT =23

15

Packet structure

__SRC_| _DST | DATA | MAC.D | OP-ID__

4bit 4bit 16bit 4bit 8bit

A OP-ID == OP_CNT == 23
A This packet is for current operation
A 1t moves to temporal buffer [15] directly

21
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R[2] Packet structure
[ | SRC_| DST | DATA | MAC-ID | OP-ID |
O]2]| O0x5A | 0 | 24 4bit 4bit 16bit 4bit 8bit
AN
hjveer:goh;y S&OPBEU[:; A OP-ID 1= OP_CNT
, A This packet is for next operation
_y Temp Buffer L\ (OP_CNT == 24)
ox7Alé OX3F J e |\ A 1t moves to OOO buffer [8]
e IR A 8 =mod(24,16)
16 MACs : A 00O buffer [i] is FIFO with 64 depth
OP_CNT =23 15

22
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o2 Out-of-Order data arrival (3) ol

R[2] Packet structure
[ | SRC_| DST | DATA | MAC.ID | OP-D
12| 0x32 |14 | 23 4bit 4bit 16bit 4bit 8bit
| /
. PE[2 )
Vomny —— [ﬁ] A OP-ID == OP_CNT == 23
, = A This packet is for current operation
—_y _Temp Bujfer ) A 1t moves to temporal buffer [14] directly
ox7Alé [ # Ox3FJ ¢ A Temp buffer (length 16) is full
2D ool A 1t will trigger 16 MACs operation
16 MACs &
OP_CNT =23 15

23
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Out -of -Order data arrival (4) Ewcr
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R[2]
Weight PE[2]
Memory OO0O Buffer
0
+ Temp Buffer
Ir 1 - I T 1
& Il
> v a—y 8 [[0,0x5A]
16 MACs é
OP_CNT =24 15

Packet structure

__SRC_| _DST | DATA | MAC.D | OP-ID__

4bit 4bit 16bit 4bit 8bit

A Temp buffer trigger 16 MACs
A Increase OP_CNT
A Ready for 24t operation

24
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R[2]
Weight PE[2]
Memory 00O Buffer
0
+ Temp Buffer
| 4 1 1 1

e

*6\\1-4\45[

é

\ 4
16 MACs

[0,0x5A]

OP_CNT =24

15

Packet structure

__SRC_| _DST | DATA | MAC.D | OP-ID__

4bit 4bit 16bit 4bit 8bit

A Before capture new packet, check OOO buffer[8]
A 8 =mod(24,16)
A Full search OOO buffer [8] (64 depth)
A Move [0;2;0x5A;0;24] to temp buffer [0]

25
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Address generator can be designed using three nested counters
Conf.

| > Comparator
Memory address A Counter P Register
(to VC) _—

#N: number of neurons in current layer
#C: number of connections from previous

F 3

Counter Counter Counter | | #N layer to the neuron in current layer
(MAC_ID) (i) (i) One layer done
- (connections) (neurons) —>
/\ /\ A (to Host)
i 1 1
Clk MAC iter.done  Connectioniter. done

For each layer, host program the NeuroCube by writing conf. registers

For 2D-Conv: #N: 26 x 26, #C: 3 x 3

28 x 28 26 X 26 10x 1
X280 —] 26X X ForFC:  #N:10x1, #C:676x 1
-6 A Latency of writing configuration
% registers is negligible
2D Conv Fully-Conn | _
- A External interface is very rare

26
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G Layerwise Programming e B8

Conv-NN for Scene labeling
A Handshaking to start programming or main operation

From host —< Program > {

Configuration
enable signal

NeuroCube \< Operation >\{

One layer done

Pixel-wise

2D-Conv Max-pooling 2D-Conv Max-pooling 2D-Conv Fully connected

—
ConvNN
Operation N
(]
™
3200 N
Pm(g:mgrr:‘gﬁ #Outputs [W, H] = [314,234] [157,117] [151,111] [75,55]  [69,49] [64.1] [8,1]
OMMANE o onnections [r, r] = [7,7] 12,2] 17, 7] [2,2] (7,7]  [256,1] [64,1]

Sent from Host
[S. Goud, 09 ICCV] 27



Simulation Results
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Synthesis Result
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28nm CMOS process 15nm FinFet process
P 787um -
A - .
sl Conl A To utilize HMC internal throughput
[E. Azarkhish, 2015 DATE] fu”y fPE — SG HZ
Router : M ‘s: _ 50um ! .
B + I ST g: A Thermal analysis performed under
tempors [E 2.5 I‘; ) 5GHz operating
g . A Max. allowable temp. of HMC: 378K
| = (pitch = 4um, diameter = 2um) v
\ / 8,246um 349K
__ 2.5KBSRAM __PMC
; —1'-{"" Temporal B_LH___EJ
z | [ § g\
| . 1' Vault Controller : 3
Weight Register Router
I,TOOum . - 11K
One core in Neurocube Neurocube on HMC logic die
Footprint of HMC 1.0: 68mm?Z [J. Jeddeloh "12 TVLSI] [HMC specification 1.0]

29
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A Measured energy consumption [J. Jeddeloh, “12 VLSI]

A 3.7 pj/bit for the DRAM layers
A 6.78 pj/bit for the logic layer, (most power hungry = ext. interface SERDES)

28nm(1.86W) 15nm (16.4W)
300MHz 5GHz

31% ' 29% ’

B
A Single core power breakdown (15nm): 187mW

\
No
‘ Actual MAC power consumption is much
lower since its utilization ratio (activity) is
very low : most of time MACs are idle
until all operands are ready

B NeuroCube computing layers
¥ HMC default logic die (without NeuroCube)*

DRAM dies* *[J. Jeddeloh 12 VLSI]

Actual logic die poweronsumption is
much lower since externalata
movements are very rare

30
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To see system throughput, cycle-level simulation is performed
A Inference: scene labeling 15nm Finfet design

A Two operating modes:
1. Duplication prev. layer to reduce NoC traffic
2. No duplication to reduce memory overhead

[ ] Duplicating prev. layer B No duplicating
Memory overhead is not

System throughput Memory requirement significant because
(OPs/s) (byte) weights are dominant
1.600E+11 H | lin EC | 5.00E+05 =

elpful in ayer /
1.400E+11 p y 4.50E+05 \ )
4.00E+05 s
1.200E+11
3.50E+05
1.000E+11 3005405
8.000E+10 2.50E+05
6.000E+10 2.00E+05
1.50E+05
4.000E+10
1.00E+05
2.000E+10 = 00E+04
0.000E+00 0.00E+00 - -

2D Conv Total 2D Conv FC Total 31
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15nm Finfet design

System throughput Memory requirement
(OPs/s) Maintain constant (byte)
120e+12 B B B B B QOE+04 | |
Memory requirement Is

6.00 -

1.00E+11 high even for small
500E+04 Image size (64 x 64)

8.00E+10
4.00E+04

6.00E+10
3.00E+04

4.00E+10 2 00E+04

2.00E+10 1.00E+04

0.00E+00 0.00E+0Q

2D 2D 2D FC FC Total
Conv. Conv. Conv.

32
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, Performance Simulation: Qs D

System throughput (OPs/s)

1.60E+11
1 40E+11 B HMCc [ DDR3

1.20E+11 FC layer
1.00E+11

8.00E+10

6.00E+10

4.00E+10

2.00E+10 . .
0.00E+00

Duplicate Non-duplicate

Multiple channels in HMC improve
system throughput

15nm Finfet design

System throughput (OPs/s)

1.60E+11
1 40E+11 ™M Mesh grid 2D NoC [l Crossbar

1.20E+11
1.00E+11
8.00E+10
6.00E+10
4.00E+10
2.00E+10
0.00E+00

2D Conv FC Layer

Crossbar improves system
throughput for FC layer

33
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A Most of prev. work focused on specific NN
Shows high throughput based on optimized design (ASIC/FPGA)

Not programmable (not scalable)

A Programmable + Scalable design
General purposed architecture: mobile CPU or GPU

Integrated systems with external DRAM

[L. Cabigelli 15 DAC] NeuroCube

Platform Tegra K1 GTX780 28nm 15nm

Bit precision ctrl. N/A N/A 16bit 16bit

Throughput (GOPs/s) 76 1781 7.95 132.4

Computing Power 11 206.8 0.249 3.41

(W)

Efficiency (GOPs/s/W) 6.91 8.61 31.92 38.82

Inference/training inference inference both both ”
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A NeuroCube: Neurc-inspired architecture as PIM in HMC
A Utilize high memory bandwidth
A Integrated with high density memory
A Meet thermal/area constraints

A Programmable architecture to cover diff. NN types
A Programming memory access pattern
A Simple memory address generator (PNG) is embedded in memory
A Memory centric neural computing (MCNC) scheme

A System performance is simulated

A Network-on-chip traffic is next bottleneck
A Optimized NoC design, data re-usage should be studied

35
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Thank you
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