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Outline

ÁMotivation

ÁBase Architecture of NeuroCube as PIM

ÁProgramming NeuroCube

ÁOut-of-Order Packet Arrival

ÁSimulation

ÁConclusion
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Digital Accelerator Design for 
Neuromorphic Algorithm

3

Å Low operation density (ops/byte)

Å Massive date required

Efficiency (GOPs/s/W)

Flexibility

CPU/GPGPU

ASIC

Run SW for 
diff. NN types

Fixed design 
for specific NN

Improve throughput & 

lower power consumption

Scalable & programmable

Digital neuro-inspired architecture with programmability to cover different types 

of neural networks, scalability, and high energy efficiency
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NeuroCube: Process -in -Memory 
Architecture for Neural Computing
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Programmable, scalable platform as processor in memory

Host 

CPU

Logic die

DRAM 

dies

TSVs

Vault

PIM based accelerator 

for neural computing

Q1. Neural computing layer should meet 

thermal and area constraint in 3D stacked 

DRAM 

Q2. NeuroCube should be programmable 

to cover different types of neural network

Hybrid Memory Cube (HMC)

Å Heterogeneous integration

Å Flexible logic die design

Fabricated by Micron 

[J. Jeddeloh `12 TVLSI]

Memory vault

0 1 2 3

NoC

Buffer

MACMAC

MACMAC

Buffer

MACMAC

MACMAC

Processing Engine

Parallel cores 

architecture



GIGASCALE

RELIABLE

ENERGY

EFFICIENT

NANOSYSTEMS LAB

GIGASCALE

RELIABLE

ENERGY

EFFICIENT

NANOSYSTEMS LAB

Basic NeuroCube Architecture
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TSVs

RRouter

VC Vault ctrl.

W.R Buffer

M M M M M M Mé

$ $ $ $ $ $ $

Cnt

OOO 

Buffer

Reg. for

weights

MAC

(Y=AB+C)

Operation

counterA
B
C

Y=AB+C

Vault
One core

PNG

Vault

R
VC

PEProcessing engine (PE)

Processor-in-memory + Parallelism

NeuroCube computing core

Å Multiple MAC units and its temporal buffer

Å Packet based NoC router

Å Programmable neurosequence generator

Å Buffer to handle out-of-order packet arrival
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Operational Model of NeuroCube
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Property of Neural Network: 

Deterministic Connections in Inference

ώ •
░ɴ╘
ύ ȟɇώ

ÅDifferent NN layer can be mapped by changing set of connected neurons

ÅDifferent data movements (memory address) can map different NN layers in 

NeuroCube 

2D convolutional Fully connected Recurrent connected

locally 

neighborhood

All neurons 

in prev. layer

All neurons 

in prev. layer + current layer

7

General expression of 

artificial neural network 

(ANN)

Ὅ: set of connected neurons
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Á Backpropagation with gradient descent

Á‏ ὡȟ ɿ •z ώ (hidden) or Ὠ ώ •z ώ (output)

·• : derivative of NL activation function

· :z element-wise multiplication

·‎: learning rate

Áɝὡ ‏ ώ ȟὡ ὡ ɾɝὡ

Á It is composed of 
Á Matrix-vector multiplication, element -wise multiplication, and outer product

Á Can be mapped to FC layer with many zeros in matrix

Á Training in neural network still has deterministic connections

8

Property of Neural Network: 

Deterministic Connections in Training
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Memory Centric Neural Computing

Á Sequence of operands is predetermined

Á Based on the sequence, memory can push the data without request

Á Data is delivered as packet through NoC 

9

Memory

Memory
Controller

On-chip
interface (bus)

Processing 
engine

Instruction
decoder

Program 
counter

PNG

On-chip
interface (bus)

Processing engine

Conventional ISA operation Memory centric

operation

Memory

Programmable Neurosequence Generator (PNG)
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MCNC Data Flow
–Initial Memory Mapping
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W1,2= [5 by 4] matrix

Å Assume 2 vaults in NeuroCube, 3 MACs/PE

Å For synaptic weights

ÅDivide synaptic weights matrix into 2 vaults

Å For previous layer

Å Divide input previous into 2 vaults or

Å Duplicate prev. layer into all vaults (reduce NoC traffic)

State

Synaptic 
weights

0x1000

0x1002

0x100A

32bit

State

Synaptic 
weights

Memory range for this layer

ÅAll neuronôs states and synaptic 

weights are 16bit fixed point

Vault 0

State State

Vault 1

Memory range for next layer

Local Gradient Local Gradient
0x1004
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MCNC Data Flow: 
Address Generator

11

Å Assume 2 vaults in NeuroCube, 3 MACs/PE

Å For each vault, it will push data to NoC within packet form

SRC DST DATA MAC-ID OP-ID

4bit 4bit 16bit 4bit 8bit j,m

i

Local Gradient

32bit

State

Synaptic 
weights

0x1000

0x1002

0x100A

Vault 0

State

R

Address Generator

MAC
[0]

MAC
[1]

MAC
[2]

0x1004 for(j=0;j<1;j++) {//one MAC cover one neuron[j]

for( i =0;i<4;i++) {//4 neurons[ i ] to one neuron[j]

for(k=0;k<3;k ++) {// state/weight/local grad

for(m=0;m<3;m++) {//#MACs/PE = 3

if k==0

addr = addr_gen ( i,j,m,state )

else if k==1

addr = addr_gen ( i,j,m,weight )

else 

addr = addr_gen ( i,j,j,local_grad )

}      

}   

}

} Three nested-counters
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MCNC Data Flow (1)
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SRC DST DATA MAC-ID OP-ID

0 0 State [0] 0 0

Push packet (state[0]) to MAC [0]

MAC [0]

MAC [1]

MAC [2]
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MCNC Data Flow (2)

13

SRC DST DATA MAC-ID OP-ID

0 0 State [0] 1 0

Push packet (state[0]) to MAC [1]

MAC [0]

MAC [1]

MAC [2]
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MCNC Data Flow (3)
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SRC DST DATA MAC-ID OP-ID

0 0 State [0] 2 0

Push packet (state[0]) to MAC [2]

MAC [0]

MAC [1]

MAC [2]
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MCNC Data Flow (4)
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SRC DST DATA MAC-ID OP-ID

0 0 W [0, 0] 0 0

Push packet (weight[0,0]) to MAC [0]

MAC [0]

MAC [1]

MAC [2]



GIGASCALE

RELIABLE

ENERGY

EFFICIENT

NANOSYSTEMS LAB

GIGASCALE

RELIABLE

ENERGY

EFFICIENT

NANOSYSTEMS LAB

MCNC Data Flow (5)
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SRC DST DATA MAC-ID OP-ID

0 0 W [0, 1] 1 0

Push packet (weight[0,1]) to MAC [1]

MAC [0]

MAC [1]

MAC [2]
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MCNC Data Flow (6)

17

SRC DST DATA MAC-ID OP-ID

0 0 W [0, 2] 2 0

Push packet (weight[0,2]) to MAC [2]

MAC [0]

MAC [1]

MAC [2]
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MCNC Data Flow (7)
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SRC DST DATA MAC-ID OP-ID

0 0 State [1] 0 1

Push packet (state[1]) to MAC [0]

MAC [0]

MAC [1]

MAC [2]

And so on é
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Out -of -order Packet Arrival Problem 
in NeuroCube

19



GIGASCALE

RELIABLE

ENERGY

EFFICIENT

NANOSYSTEMS LAB

GIGASCALE

RELIABLE

ENERGY

EFFICIENT

NANOSYSTEMS LAB

Out -of -order Packet Arrival 
Issue: NoC Congestion

20

W1,2= [5 by 4] matrix

Duplicating Previous Layer Non Duplication

1

PE

0

PE

1

PE

0

PE

Although data access is sequential, data arrival can be 

out-of-order due to NoC congestion
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Out -of -Order data arrival (1)

21

SRC DST DATA MAC-ID OP-ID

4bit 4bit 16bit 4bit 8bit

Packet structureR[2]

PE[2]

16 MACs

OOO Buffer

0

1

...

8

é

15OP_CNT = 23

é
0 14 15

0x7Aé
0 14 15

Weight 
Memory

Á OP-ID == OP_CNT == 23

Å This packet is for current operation

Å It moves to temporal buffer [15] directlyTemp Buffer

0 2 0x3F 15 23
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Out -of -Order data arrival (2)

22

R[2]

PE[2]

16 MACs

OOO Buffer

0

1

é

8

é

15

é
0 14 15

0x7A 0x3Fé
0 14 15

Weight 
Memory

Á OP-ID != OP_CNT

Å This packet is for next operation 

(OP_CNT == 24)

Å It moves to OOO buffer [8]

Å 8 = mod(24,16)

Å OOO buffer [i] is FIFO with 64 depth

Temp Buffer

0 2 0x5A 0 24

OP_CNT = 23

SRC DST DATA MAC-ID OP-ID

4bit 4bit 16bit 4bit 8bit

Packet structure
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Out -of -Order data arrival (3)

23

R[2]

PE[2]

16 MACs

OOO Buffer

0

1

é

8 [0,0x5A]

é

15

é
0 14 15

0x7A 0x3Fé
0 14 15

Weight 
Memory

Temp Buffer

1 2 0x32 14 23

OP_CNT = 23

Á OP-ID == OP_CNT == 23

Å This packet is for current operation

Å It moves to temporal buffer [14] directly

Å Temp buffer (length 16) is full

Å It will trigger 16 MACs operation

SRC DST DATA MAC-ID OP-ID

4bit 4bit 16bit 4bit 8bit

Packet structure
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Out -of -Order data arrival (4)

24

R[2]

PE[2]

16 MACs

OOO Buffer

0

1

é

8 [0,0x5A]

é

15

é
0 14 15é

0 14 15

Weight 
Memory

Á Temp buffer trigger 16 MACs

Á Increase OP_CNT

Á Ready for 24th operationTemp Buffer

OP_CNT = 24

SRC DST DATA MAC-ID OP-ID

4bit 4bit 16bit 4bit 8bit

Packet structure
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Out -of -Order data arrival (5)

25

R[2]

PE[2]

16 MACs

OOO Buffer

0

1

é

8 [0,0x5A]

é

15

é
0 14 15é

0 14 15

Weight 
Memory

Á Before capture new packet, check OOO buffer[8]

Á 8 = mod(24,16)

Á Full search OOO buffer [8] (64 depth)

Á Move [0;2;0x5A;0;24] to temp buffer [0]

Temp Buffer

OP_CNT = 24

SRC DST DATA MAC-ID OP-ID

4bit 4bit 16bit 4bit 8bit

Packet structure
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Layerwise Programming

26

Address generator can be designed using three nested counters

For each layer, host program the NeuroCube by writing conf. registers

28 x 28 26 x 26 10 x 1

2D Conv
Fully-Conn

Conf.
Register

Counter Comparator

#C #N

For 2D-Conv: #N: 26 x 26, #C: 3 x 3

For FC:          #N: 10 x 1,   #C: 676 x 1

Å Latency of writing configuration 

registers is negligible

Å External interface is very rare

#N: number of neurons in current layer

#C: number of connections from previous 

layer to the neuron in current layer
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Layerwise Programming

[S. Goud, `09 ICCV]
27

Conv-NN for Scene labeling

ProgramFrom host

Configuration

enable signal

NeuroCube

One layer done

Operation

Å Handshaking to start programming or main operation
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Simulation Results

28
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Synthesis Result

Footprint of HMC 1.0: 68mm2

28nm CMOS process 15nm FinFet process

Å To utilize HMC internal throughput 

fully, fPE = 5GHz

Å Thermal analysis performed under 

5GHz operating

ÅMax. allowable temp. of HMC: 378K

[J. Jeddeloh `12 TVLSI] [HMC specification 1.0]

29
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Hardware Power Breakdown

30

ÅMeasured energy consumption [J. Jeddeloh, `12 VLSI]

Å 3.7 pj/bit for the DRAM layers 

Å 6.78 pj/bit for the logic layer, (most power hungry = ext. interface SERDES)

28nm (1.86W)
300MHz

15nm (16.4W)
5GHz

13%

31%

56%

18%
29%

53%

NeuroCube computing layers
HMC default logic die (without NeuroCube)*
DRAM dies* *[J. Jeddeloh, `12 VLSI]

Actual logic die powerconsumption is 
much lower since external data 
movements are very rare

Å Single core power breakdown (15nm): 187mW 

16MACs

(78%)

Actual MAC power consumption is much 
lower since its utilization ratio (activity) is 
very low : most of time MACs are idle 
until all operands are ready

NoC Router

(19%)
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Performance Simulation: 
Inference

Á Inference: scene labeling

Á Two operating modes:
1. Duplication prev. layer to reduce NoC traffic

2. No duplication to reduce memory overhead

31

To see system throughput, cycle-level simulation is performed

0.000E+00

2.000E+10

4.000E+10

6.000E+10

8.000E+10

1.000E+11

1.200E+11

1.400E+11

1.600E+11

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

3.00E+05

3.50E+05

4.00E+05

4.50E+05

5.00E+05

2D Conv         FC             Total 2D Conv         FC             Total

System throughput 

(OPs/s)

Memory requirement 

(byte)

Duplicating prev. layer No duplicating

Helpful in FC layer

Memory overhead is not 

significant because 

weights are dominant

15nm Finfet design
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Performance Simulation: 
Training

32

Memory requirement 

(byte)
System throughput 

(OPs/s)

Memory requirement is 

high even for small 

image size (64 x 64)

0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04

5.00E+04

6.00E+04

7.00E+04

8.00E+04

0.00E+00

2.00E+10

4.00E+10

6.00E+10

8.00E+10

1.00E+11

1.20E+11

1.40E+11
Maintain constant 

system throughput

2D

Conv.

FCFC2D

Conv.

2D

Conv.

Total

15nm Finfet design
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Performance Simulation: 
DDR3/Crossbar

33

HMC DDR3

Non-duplicateDuplicate

System throughput (OPs/s)

0.00E+00

2.00E+10

4.00E+10

6.00E+10

8.00E+10

1.00E+11

1.20E+11

1.40E+11

1.60E+11

0.00E+00

2.00E+10

4.00E+10

6.00E+10

8.00E+10

1.00E+11

1.20E+11

1.40E+11

1.60E+11

System throughput (OPs/s)

Mesh grid 2D NoC Crossbar

FC Layer2D Conv

Multiple channels in HMC improve 

system throughput

FC layer

Crossbar improves system 

throughput for FC layer

15nm Finfet design
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Related Works

Á Most of prev. work focused on specific NN

Á Shows high throughput based on optimized design (ASIC/FPGA)

Á Not programmable (not scalable)

Á Programmable + Scalable design

Á General purposed architecture: mobile CPU or GPU

Á Integrated systems with external DRAM

[L. Cabigelli `15 DAC] NeuroCube

Platform Tegra K1 GTX780 28nm 15nm

Bit precision ctrl. N/A N/A 16bit 16bit

Throughput (GOPs/s) 76 1781 7.95 132.4

Computing Power 
(W)

11 206.8 0.249 3.41

Efficiency (GOPs/s/W) 6.91 8.61 31.92 38.82

Inference/training inference inference both both
34
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Conclusion

Á NeuroCube: Neuro-inspired architecture as PIM in HMC

Á Utilize high memory bandwidth

Á Integrated with high density memory

Á Meet thermal/area constraints

Á Programmable architecture to cover diff. NN types

Á Programming memory access pattern

Á Simple memory address generator (PNG) is embedded in memory

Á Memory centric neural computing (MCNC) scheme 

Á System performance is simulated

Á Network-on-chip traffic is next bottleneck

Á Optimized NoCdesign, data re-usage should be studied

35
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Thank you

36


