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Executive Summary

= Motivation: New memory reference locality relationship in
dynamic parallelism

m Problem: State-of-the-art GPU schedulers are unaware of this
new relationship

= Designed for non-dynamic parallelism settings
= Do not exploit parent-child locality in L1 and L2 cache

m Proposed: LaPerm

» Locality-aware thread block scheduler
= Three scheduling decisions




Dynamic Parallelism on GPU

= Launch workload on demand from GPU
= CUDA Dynamic Parallelism (CDP)
= OpenCL device-side enqueue
= Dynamic Thread Block Launch'!! (DTBL) > Launch new thread blocks
= Benefits
= Apply to fine-grained parallelism in irregular applications
= Increase execution efficiency and productivity
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[1] Wang, Rubin, Sidelnik and Yalamanchili, “"Dynamic thread block launch: A lightweight execution mechanism to support irregular applications on gpus”, ISCA 2015
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Memory Locality in Dynamic Parallelism

s New data reference locality relationship in parent-child
launching

= Potential Locality:
= Parent-child and child- [Readlwﬁte Graph Data

sibling data sharing
m L1/L2 locality
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m Average shared footprint ratio for 8 benchmarks:
= Parent-child: 38.4%
= Child-sibling: 30.5%
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TS
Current GPU Scheduler

m First-Come-First-Serve kernel scheduler
s Round-Robin TB Scheduler

Kernel 1
First-Come-First-Serve Kernel Distributor
TBO TB1
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TB2 TB3
\ 4

Round-Robin SMX Scheduler
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T T
Current GPU Scheduler (continue)

= For non-Dynamic Parallelism scenario
= Fairness and efficiency

= For Dynamic Parallelism scenario
= Child TBs are scheduled after parent TBs

Parent TBs First-Come-First-Serve Kernel Distributor
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Current GPU Scheduler: Issues

m[ssue 1: Child TBs are executed far later than the parent TBs,
decreasing L2 locality

First-Come-First-Serve Kernel Distributor
GPU Global Memory

L2 Cache
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P4 P7

C4 C5
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Current GPU Scheduler: Issues (continue)

m[ssue 1: Child TBs are executed far later than the parent TBs,
decreasing L2 locality

mIssue 2: Child TBs are executed on a different SMX than its
parent, decreasing L1 locality

m Fails to exploit parent-child or child-sibling locality

= Exacerbated in real applications
which generally have many TBs.
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LaPerm: Locality-Aware Scheduler for Dynamic Parallelism

m L everage locality between parent and child TBs

» Three scheduling decisions
s Accommodate different forms of locality

= Goal: improve memory efficiency and overall performance
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L TN
Scheduling Decision 1: TB Prioritizing

= Prioritize child TBs to be executed immediately after direct
parent TBs

m Reuse parent data and avoid L2 cache pollution

GPU Global Memory

Parent TBs
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P6 P7 Still no L1 locality!
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Scheduling Decision 2: Prioritized SMX Binding

» Bind the prioritized child TBs on the same SMX as the parent
TBs

m Utilize L1 cache for data reuse

GPU Global Memory
\__________________________ 4
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Parent TBs
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SMX load balancing issue!
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L TN
Scheduling Decision 3: Adaptive Prioritized SMX Binding

= Adaptively bind child TBs on available SMXs
= Avoid SMX load balancing caused by SMX binding

GPU Global Memory Parent TBs
L2 Cache 00 1 [p1 P3
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I
Architecture Support

= Multi-level priority queues
m Used to store new TB/Kernel information
= Ordered using priority value
= Divided among multiple SMXs

Off-chip overflow priority queues

u RAM

On-chip priority queues

Kernel First-Come-First-Serve Kernel Distributor
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Benchmark and Experimental Environment

= Benchmark implemented with dynamic parallelism
= Simulated on GPGPU-Sim
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Performance of LaPerm: L2 Cache

L2 Cache Hit Rate
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Performance of LaPerm: L2 Cache
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a2 Cache hit rate benefits mainly from prioritizing child TBs

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY ‘ I 18



Performance of LaPerm: L2 Cache
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a2 Cache hit rate benefits mainly from prioritizing child TBs

m Graph applications with cagel5 input have more parent-child
data reuse
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Performance of LaPerm: L1 Cache
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Performance of LaPerm: L1 Cache

L1 Cache Hit Rate
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» L1 Cache hit rate benefits mainly from binding child TBs to parents’ SMXs
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Performance of LaPerm: L1 Cache
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» L1 Cache hit rate benefits mainly from binding child TBs to parents’ SMXs
» Product recommendation pre has good child-sibling data locality
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Performance of LaPerm: IPC

Normalized IPC
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Performance of LaPerm: IPC
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m TB-Pri: IPC (1.13x) increases due to higher L2 cache hit rate
s SMX-Bind: IPC decreases (1.08x) from TB-Pri due to higher L1 cache hit rate but
SMX load balancing

= Adaptive-Bind: Overall IPC (1.27x) increases because of both memory efficiency
and load balancing
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Conclusion

mLaPerm: Locality-aware thread block scheduler for dynamic
parallelism
= Exploit new memory reference locality in the parent-child launching

= Three scheduling decisions
m Increase L1/L.2 cache locality while maintaining SMX load balance

= Achieve overall memory system efficiency and performance
improvement
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